https://ift.tt/2QbwIx9
UPenn Researchers Using Jammed Microgels as 3D Bioprinting Inks https://ift.tt/2OYFmTn A trio of researchers from the University of Pennsylvania have published a paper, titled “Jammed Microgel Inks for 3D Printing Applications,” on their use of jammed microgels as inks for bioprinting, in order to address the various limitations of 3D bioprinting with hydrogels. Researchers and scientists use 3D bioprinting to organize materials and cells into 3D structures, and while it can do amazing things, the technology still has a lot of challenges, like materials restrictions and achieving the correct resolution and stability for printed constructs. While soft hydrogel materials are often used in tissue engineering, thanks to tunable biochemical and biophysical properties, it’s hard to print them without using some sort of additive or modification.
The microparticles found in jammed systems are packed pretty densely, and physical interactions with surrounding particles immobilize them. This results in macroscopic materials that behave as solids, until movement is induced by applied force.
Jammed microgels work as bioinks because they allow cross‐linked hydrogel particles to be formed as an aggregate bulk, which can then be extruded as a stable filament without using any other material or having to engineer any interparticle interactions. The researchers formed microgel inks through the use of microfluidic devices.
The team used norbornene‐modified hyaluronic acid (NorHA), poly(ethylene glycol) diacrylate (PEGDA), and agarose to make their microgels, which definitely displayed the kinds of rheological properties important for 3D printing, such as shear-thinning behavior, elastic response at low strains, and the ability to flow during extrusion and stabilize quickly after deposition. A modified Revolution XL 3D printer was used to fabricate the microgels into a four-layer lattice. Mechanical forces disrupted the 3D printed structures as expected, so the team used post‐cross‐linking to chemically link the particles together.
Additionally, when the printed and post‐cross‐linked cuboid structures were placed in cell culture medium, they held their dimensions and structure for a whole week, and the “compressive moduli of printed constructs” was increased by introducing interparticle bonds to post‐cross‐linking. This happened at a lower value than hydrogels that are made of the same formulation used to make microgels; when combined, these results that it’s possible to 3D print microgel inks, “as the jammed ink properties support printing and short‐term stability.”
The research shows that microgel inks can definitely be used to 3D print heterogeneous structures without damaging any cells.
Co-authors of the paper are Christopher B. Highley, Kwang Hoon Song, Andrew C. Daly, and Jason A. Burdick. Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 05:06PM
0 Comments
https://ift.tt/2zi6XnH
Wageningen University: Adding Some Sparkle to 3D Printed Objects with Gold Nanoparticles https://ift.tt/2Dfxuq6 Nanotechnology may seem novel and advanced, but it has actually been used for thousands of years. Metallic nanoparticles are present in glass and pottery from hundreds and thousands of years ago, giving the items a shiny, glittering look. In a paper entitled “Plastic embedded gold nanoparticles as 3D printing dichroic nanocomposite material,” a group of researchers discusses how they fabricated a 3D printable nanocomposite composed of dichroic gold nanoparticles and a 3D printable polymer.
The nanoparticle solution was studied by transmission electron microscope (TEM).
Once the gold nanoparticle solution was prepared, the nanoparticles were embedded in a 3D printable material that could be used with a standard off-the-shelf FDM 3D printer. The researchers used polyvinyl alcohol (PVA) as the carrier, as it is one of the most commonly used 3D printing materials, it is water soluble and can thus be mixed with the nanoparticles without need of changing solvent, and because it can be used as a capping agent for nanoparticles.
Authors of the paper include Lars Kool, Anton Bunschoten, Aldrik H. Velders and Vittorio Saggiomo. Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 03:51PM
https://ift.tt/2AD2VbB
University of Twente Researchers 3D Print Gold Microstructures Using LIFT Technique https://ift.tt/2PsKqPp Researchers at the University of Twente have developed a new laser printing technique that allows for the 3D printing of gold nanostructures, including complex overhanging structures. By pointing a very short laser pulse onto a nanometer-thin metal film, a tiny droplet of liquid metal is ejected onto the substrate, where it solidifies. The technique is called laser-induced forward transfer, or LIFT. The researchers have been using it to build tiny, complex structures out of copper and gold; the copper acts as a mechanical support for the gold. LIFT will enable the 3D printing of micro components for electronics or photonics. The example that the researchers use is a tiny helix, which could act as a mechanical spring or an electrical conductor at the same time. The helix is printed with copper around it, forming a copper box, which prevents a drop meant for a new winding from landing on the previous winding. After the helix is completed, the copper is etched away chemically, leaving a helix of pure gold, just a few tens of microns in size. The volume of the droplets is a few femtoliters, and have the diameter of a little more than one nanometer. A short pulse of green laser light is used to melt the gold and copper. The researchers were concerned that the two metals would mix, but that wasn’t the case. The drop by drop method used to build the microscopic structures results in high resolution, with a surface roughness of only 0.3 to 0.7 microns. The research is documented in a paper entitled “Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films.“
The research was carried out by the departments of Mechanics of Solids, Surfaces and Systems (MS3) and Design, Production and Management (DPM), both part of the Engineering Technology faculty of the University of Twente. The researchers also collaborated with DEMCON Corporation, a spinoff company of the University of Twente. Authors of the paper include Matthias Feinaeugle, Ralph Pohl, Ton Bor, Tom Vaneker and Gert-willem Römer. Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 02:39PM
https://ift.tt/2SzG2MX
Concrete and 3D Knitting Combine to Produce KnitCandela 3D Printed Structure https://ift.tt/2Oi4cZ7 In Mexico City, a strange structure has been erected – it looks a bit like a crouching frog, or maybe an exotic flower. It was built using a special 3D knitting technique developed at ETH Zurich. The structure, called KnitCandela, is partially made from concrete, but its formwork is a knitted textile supported by a steel cable-net. The project, an homage to Spanish-Mexican architect Felix Candela, is a collaboration with Zaha Hadid Architects Computation and Design Group and Architecture Extrapolated. 3D knitting has been used before to produce things like clothing and furniture, but it isn’t often seen on this large of a scale. It took 36 hours for an industrial knitting machine to produce the shuttering of the formwork for the shell structure, following a digital pattern. The fully shaped, double-layered textile was knitted in four long strips, with the lower layer forming the visible ceiling. The upper layer contains sleeves for the cables of the formwork system and pockets for balloons. After the structure is coated in concrete, the balloons are popped, leaving hollow spaces that help save on material and weight. The structure was erected in the courtyard of a museum; the knitted formwork was tensioned between a temporary boundary frame and sprayed with a specially formulated cement mixture, just a few millimeters thick. Once it hardened, conventional fiber-reinforced concrete was applied. The knitted fabric, which was brought to Mexico City inside normal suitcases, weighs about 25 kilograms and the cable around 30 kilograms. Together, they are able to support more than five tonnes of concrete. KnitCandela’s technology was developed by Mariana Popescu, a doctoral student with Philippe Block, Professor of Architecture and Structure at ETH Zurich, and Lex Reitier, a doctoral student with Robert Flatt, Professor of Physical Chemistry of Building Materials. The technology is an evolution of the flexible forming technology developed for the HiLo roof, which the Block group developed for Empa’s NEST research and innovation building in 2017. Unlike the HiLo roof, which was made of a network of cables and a sewn textile, KnitCandela’s knitted shell was produced in one go.
While 3D printing is being pursued with interest in the construction industry right now, 3D knitting is a new idea, but a promising one. Giant robotic 3D printers aren’t required for 3D knitting a structure like KnitCandela, either – all that is needed is a conventional knitting machine.
VIDEO Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. [Source/Images: ETH Zurich]
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 12:12PM
https://ift.tt/2ze3dDM
A 3D Printed Symphony of Violins Will Sound in Ottawa for 3D String Theory Concert https://ift.tt/2yKPW68 ![]() (L to R) Marlena Pellegrino, Hanna Williamson, Natalie Deschesnes, Alisa Klebanov, Geena Salway [Image: Mark Holloway] Several musicians and 3D printing enthusiasts have combined their love for both of those things by creating 3D printed musical instruments – and violinsare someof the most common. These talented makers have created instruments that often sound as beautiful as their traditional counterparts – but have you ever wondered what several 3D printed violins would sound like in symphony? That’s what Laurent Lacombe, Co-Founder of Creadditive, and violin maker Charline Dequincey wanted to find out, so they spent several months 3D printing and fine-tuning eight violins for the Ottawa Symphony Orchestra. The orchestra will play the 3D printed instruments in a performance called 3D String Theory, which will take place on November 4th. ![]() Composer Harry Stafylakis (left), a 3D printing technician, and soloists (L-R: Jessie Ramsay, Mary-Elizabeth Brown, and Lisa Moody) at the Industrial Technology Centre in Winnipeg where the instruments were printed. [Image courtesy of Ottawa Symphony Orchestra] Creadditive is based in Gatineau with a satellite office in Quebec City. The company specializes in using 3D printing for things like heritage restoration, but creating eight 3D printed violins wasn’t a huge change for Lacombe.
Lacombe started by CT scanning Dequincey’s conventional violin, then converting the 2D file into a 3D model. It wasn’t quite as simple as just hitting “print” after that, though – plastic is heavier than wood, so the violins needed to be modified so as not to be too heavy. Dequincey gave regular feedback in order to achieve the best compromise between weight, design and sound.
The sound produced by the 3D printed violins isn’t identical to that produced by a traditional wooden violin, Lacombe said, but that wasn’t the goal of the project – the goal was to see what a new, digital manufacturing form could accomplish when combined with a traditional musical instrument. He doesn’t think that 3D printing will ever replace traditional handcrafting, as the sound just isn’t the same, but he does think that 3D printed violins could be valuable for entry level musicians who can’t yet afford a traditional violin. Music is one of the oldest art forms, so it will be interesting to see how the newest technology can alter the sounds of such a traditional instrument. 3D printed violins may not replace handcrafted wooden ones, but they can bring a new dimension to them – and make more people realize that 3D printing is capable of creating something truly functional and valuable.
Eight women will perform in the 3D String Theory concert.
You can buy tickets for 3D String Theory here. VIDEO Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. [Source: Ottawa Business Journal]
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 12:12PM PERI Group Acquires Significant Stake in Construction 3D Printing Company COBOD International10/31/2018
https://ift.tt/2RmMdma
PERI Group Acquires Significant Stake in Construction 3D Printing Company COBOD International https://ift.tt/2JsuzuH In a refreshing change of pace from most construction 3D printing, Denmark’s 3D Printhuset, which made a name for itself with a three year, government-funded research project into the state of 3D construction printing, takes a more realistic approach to large-scale 3D printing. This enables the company to deliver quality results, such as the Building On Demand (BOD), the first 3D printed building in Europe that met the necessary building codes. When demand started to increase for construction 3D printers, like the company’s BOD2 with a print speed of 1 meter per second, 3D Printhuset won the first ever EU tender for 3D construction printers. This led to a major decision: create a new company just for construction 3D printing.
As a result of this investment, COBOD’s 3D construction printers will be made available to all of PERI’s global customers. ![]() Signing the investment agreement. L-R: Leonhard Braig, member of the Group Management of the PERI Group; Christian Schwörer, Chairman of the board of the PERI Group; and Henrik Lund-Nielsen, CEO, COBOD International.
Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 11:42AM
https://ift.tt/2CVqTjA
3D Printing News Briefs: October 31, 2018 https://ift.tt/2PrQ0S7 Happy Halloween, fair readers! We’re giving you a treat today instead of a trick – our latest edition of 3D Printing News Briefs. First up, Materialise has completed a mammoth 3D printing project, and Australian manufacturing company C-Mac is embracing the technology for the first time. atum3D has revealed what new product it will be bringing to the upcoming formnext 2018. Finally, a group of French researchers compared powder bed fusion and binder jet 3D printing as possible methods for fabricating sand molds. Materialise Unveils Life-Size 3D Printed Mammoth
Fittingly, Materialise used nine of its large-format Mammoth SLA 3D printers, the only machines it makes but does not sell, to complete all 1,260 hours of 3D printing. The company’s Design & Engineering team also created a modular carbon fiber structure that could support the skeleton from the interior. Now, the 3D printed replica of the mammoth is back in Lier, just in time for the doors to open at its new city museum. VIDEO C-Mac Embraces 3D Printing
It’s not easy to adopt a new type of thinking, but C-Mac knew that 3D printing was the future of the industry and, with the help of its 50 years of experience in manufacturing, stepped up to the plate. atum3D Introducing Latest Software at formnext
At formnext, atum3D will also be introducing its new Industry Excellence Pack for material scientists and research institutes, as well as an open resin platform for the DLP Station 5, which will be showcased at the event. Visit atum3D at booth 3.1-B19 to see its new Operator Station with MAGS AI and the DLP Station 5. Comparing Powder Bed Fusion and Binder Jetting for Sand Molds
Co-authors of the paper are Tugdual Amaury Le Néel, Pascal Mognol, and Jean-Yves Hascoët. Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 05:39AM
https://ift.tt/2eCFm7h
Sterne Bringing Silicone 3D Printing to COMPAMED Trade Fair https://ift.tt/2qkNLBD Sterne Elastomere, a company located in the south of France, specializes in manufacturing items out of silicone materials for industries such as food and drink, mass transit, medical, nuclear, and pharmaceuticals and cosmetics. Two years ago, Sterne made its move into the 3D printing world and debuted its SiO-Shaping 1601 silicone 3D printer at K 2016, a top plastics and rubber trade show, for the first time. In order to provide its clients with 3D printed silicone prototypes that possessed properties similar to that of the final product, Sterne developed its technology so it could deposit filaments of 100% UV-cured silicone. It’s definitely not easy to 3D print with silicone, due to properties that make it unable to be heated and extruded in the same way that typical thermoplastic materials can be, but companies like Sterne, Wacker Chemie, and Fripp Design Research have been making great strides over the last few years.
The company’s SiO 3D silicone printing has been further refined since it was first introduced. In 2016, it promised a minimum 3D print layer height of 0.25 mm, but can now achieve a minimum of 0.1 mm (100 microns). Its SiO-Shaping 1601 silicone 3D printer offers a maximum print volume of 205 x 200 x 100 mm, along with hardness from 30 to 60 Shores A.
In addition, Sterne’s SiO silicone 3D printing also offers a full panel of colors, including phosphorescent, translucent, and opaque, which is available for colors like red, yellow, black, and green. However, these colors are only available for materials that meet the necessary quality requirements according to the FDA or USP class VI medical grade. You can see the company’s silicone 3D printing prowess for yourself at COMPAMED from November 12-15 in the Düsseldorf exhibition center. To rediscover, or see for the first time, Sterne’s range of products for the medical sector, visit the company at Stand L02 in Hall 08b. Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 31, 2018 at 02:09AM
https://ift.tt/2SwS7CQ
Twikit and BMW Offer Flashy Customization Options for Your Next Car https://ift.tt/2zfgaNz While many automotive manufacturers have been using 3D printing in their design and manufacturing processes, BMW has been a leader in the field, using the technology for over 25 years. The company has used 3D printing for everything from roof racks to more advanced concepts. There are plenty of reasons for BMW and other automotive manufacturers to turn to 3D printing, like time and cost savings and the ability to produce lightweight, efficient, complex parts, but there are also some benefits of 3D printing that are simply fun, like customization. BMW’s new MINI can be customized for users in a multitude of different ways, such as 3D printed patterns, pictures, shapes, and letters on the dashboard and glove box. You can even request an LED light that projects your name on the street when you get out of the car, according to BMW. The company is the first to take automotive personalization to this level, and it’s doing so with the help of Twikit, a Belgian company whose software platform emphasizes 3D printed customization possibilities. BMW MINI customers can design their own customized cars online, and the digital files are sent to the production facility, where they are manufactured using 3D printing, laser cutting and other advanced technologies.
Twikit was founded in 2012 by Hoppenbrouwers, Martijn Joris and George Lieben. The company now has 33 employees and is becoming active worldwide, particularly in Europe and the United States. Besides working with BMW, Twikit also offers its personalized production services for prosthetics and orthotics, jewelry, electronics, windows and doors, and more. The company prides itself on being able to help companies smoothly and seamlessly bring together multiple digital production techniques such as 3D printing, CNC machining and laser cutting.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 30, 2018 at 04:06PM
https://ift.tt/2ACDyqt
US Army Takes RFAB 3D Printing Facility to South Korea https://ift.tt/2CNa6iV
The Army chose South Korea as the newest location for the facility because of its near-deployment nature.
The facility, which has five 3D printers, can quickly produce parts for tanks, trucks, rifles, and many other things the Army might need. While the parts produced by 3D printing may be small, the impact of the technology on the Army has the potential to be great. Some of the most critical parts have been extremely small, said Adams. For example, a fire suppression cap for a Mine-Resistant Ambush Protected vehicle costs only $2.51 – but it takes 126 days to ship from the United States, and if it is missing or broken, it can put the entire vehicle out of commission. 3D printing a replacement takes less than a day. The Army isn’t just producing spare parts, either. It also 3D printed about 75 training mines and mortars. There are limits to the program, however; the 3D printed replacement parts are just temporary until permanent ones arrive, and the 3D printers in the RFAB can only produce plastic and some carbon-reinforced materials. The team also can’t 3D print parts that would cause serious harm if they were to fail, such as rifle firing pins or parts for helicopters. The program still does the Army plenty of good, however, with its quick turnaround times and ability to be transported from location to location.
![]() James Zunino, a materials engineer with Armament Research Development and Engineering Center, at Picatinny Arsenal, N.J., discusses a 3-D printed grenade launcher during Lab Day, May 18, 2017, at the Pentagon. (Image: Sgt. Jose Torres) So far, Adams’ unit has produced about 65 different parts and about 500 pieces of equipment in three months with a success rate of about 65 percent. Even failed parts are valuable, too, as they offer insight into the limits of the technology that can be used at the Army Armament Research, Development and Engineering Center (ARDEC) in Rock Island, Illinois. Parts that succeed are also sent to ARDEC, where they are saved as blueprints to a military-wide data cloud that can be accessed by any branch – an ever-growing library of digital parts that can be downloaded and 3D printed instantly. ![]() Zunino discusses 3-D printed parts for tracked robotic vehicles, during Lab Day, May 18, 2017, at the Pentagon. [Image: Sgt. Jose Torres] Adams said that the US Marines and Navy are further ahead of the Army when it comes to 3D printing, but the Army is working to catch up. According to Billy Binikos, an ARDEC representative who works with Adams, the Army could adapt RFAB facilities for regular use by 2025.
Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com October 30, 2018 at 02:51PM |
Categories
All
Archives
April 2023
|