RICK REA: Helping You Grow Through Online Marketing
  • Home
  • Blog
    • Social Media News
    • SEO Marketing News
    • Digital Trends News
    • Photography News
    • Mobile Marketing
    • Business News
    • Gadget News
    • Printing News
  • Contact
  • About
  • Subscribe

Printing News

Recycled HDPE Sandwich Composite Materials for Casting Using FDM 3D Printing

7/31/2019

0 Comments

 


Recycled HDPE Sandwich Composite Materials for Casting Using FDM 3D Printing

https://ift.tt/2ZyEZ2Q

In ‘Recycled HDPE reinforced Al2O3 and SiC three dimensional printed patterns for sandwich composite material,’ authors Narinder Singh, Rupinder Singh, Ranvijay Kumar, and IPS Ahuja explore new ways to create sacrificial patterns for investment casting using FDM 3D printing and recycled materials.

While recycling is a major concern overall, worldwide, increasing use of thermoplastics raises even more questions in terms of waste disposal. Because of the challenge in separating sub-parts, researchers have been seeking other ways to recycle—expressly, without separation.

“Commercially various waste materials are created by service, manufacturing industries and municipal solid wastes,” state the researchers. “The expanding awareness about the Earth has contributed to the concerns related with transfer of the disposal of the wastes. One of the major concerns especially in developing nations like India is solid waste management.”

Flow chart of industrial recycling process cycle.

Previous research has been performed regarding recycled HDPE for wood composite, and WPC has been studied as well, although the authors inform us that bioplastics are usually cost-prohibitive for use. In most cases, however, polymers do include fillers meant to strengthen thermal and mechanical properties.

Investment casting usually requires a mold and ceramic shells to create prototypes, with separation lines and inserts built into the molds. Structures are then finished, assembled, and filled with liquid wax, after which, the contents of the mold are broken out.

“In conventional IC process, substantial investments are focused on model or generation of tooling advancement,” state the researchers. “The committed resources increment significantly with mold intricacy or low volume fabrication.”

“All things considered, a tool maker needs to assess individual mold configurations before focusing to manufacturing since design errors or iterations are typically costly and tedious to alter.”

New technology has been responsible, however, for better accuracy and strength in final products created through rapid prototyping.

RIC process.

In this research, the scientists used feed stock filament wire made of HDPE and reinforced with Al2O3/SiC (of average diameter 50 μm). Patterns were then fabricated on an open-source FDM 3D printer. Traditionally, such production would take up to three months just to make one part, costing up to $500. With FDM 3D printing, the process took only eight hours at the most.

With die stone powder, the team was able to create a reliable sandwich composite material, offering shell stability, and temperature resistance up to around 1100 °C. Along with Al, other metals and alloys can be used too, with the end results presenting suitable surface hardness and porosity levels for prototyping.

“These SCM can be used as two phase material, reinforcing elements for cement composites with fractal architecture, shape optimization of the force networks of masonry structures for civil engineering applications, tensegrity architecture, meta-material printing. The proposed route for recycling of plastic solid waste is in line with the application domain discussed by other investigators via 3D printing,” concluded the researchers.

Composite materials are becoming increasingly popular in the world of 3D printing and additive manufacturing as researchers continue to find new ways to produce better prototypes and parts, whether in using wood composites, continuous carbon fiber, metal polymers, or other polymer composites.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Steps followed for preparation of SCM.

[Source / Images: ‘

Recycled HDPE reinforced Al2O3 and SiC three dimensional printed patterns for sandwich composite material

’]

 

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 11:42PM
0 Comments

FDM 3D Printing of Rocket Fuel Grains

7/31/2019

0 Comments

 


FDM 3D Printing of Rocket Fuel Grains

https://ift.tt/2SZcEjR

In ‘Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Different Materials,’ authors Mitchell McFarland and Elsa Antunes create a device to evaluate small-scale fuel grains, focusing on material regression rates, as well as comparing them to other hybrid fuels in experiments that are important to the space industry as new rockets and motors are created, using a variety of technologies and new materials.

McFarland and Antunes explain that 3D printing has been the ‘most impressive advancement,’ and especially with FDM 3D printing as it offers all the benefits that are attractive to investors and manufacturers, from speed in production to substantial savings on the bottom line.

“FDM has enabled designers to incorporate complex combustion ports into HRMs and has opened up an entirely new set of materials for the fabrication thereof,” state the researchers.

Typical casting and curing techniques can be more difficult—and despite improvements in such methods—designs are still limited in innovation and must account for post-processing in removing the tooling. Supports are not required for fuel grain fabrication very often, but even if they are, the structures are easily removed due to water-soluble materials.

To complete their goal of analyzing regression, the authors performed several small-scale static fire tests with 3D printed materials, including:

  • ABS – performs as well as HTBP
  • ASA – beneficial in similarities to ABS
  • PLA – benchmark for testing Al
  • PP – low price/high crystalline material
  • PETG – excellent mechanical properties
  • Nylon – excellent mechanical properties
  • Al – PLA with aluminum particles

Structural, thermal, and mechanical properties of test materials

Each grain was created 100 mm long and 20 mm in diameter, with a 6 mm diameter combustion port. The team 3D printed a series of ABS grains using a Prusa i3 MK2 FDM 3D printer, with the materials subjected to three-minute burns, tested, and measured.

Small-scale fuel grains, left to right: ABS, PLA, PETG (Polyethylene terephthalate glycol), PP, ASA, Nylon, and AL (PLA with aluminum particles).

“Once the burning time was reduced to three seconds, the structural integrity of the fuel grain was far better preserved with combustion of fuel being limited to within the combustion port,” noted the researchers. “Three further tests were then conducted with 100 mm × 20 mm ABS fuel grains to ensure the repeatability of the test stand chamber pressure measurement. The results of the thrust validation show excellent consistency across the three burns, with very similar profiles demonstrated in each run.”

Some of the settings were modified to avoid any defects that could affect the performance of the materials. The team noted ‘zits’ on the outer surfaces of some prints—describing them as ‘oozing’ in some cases, or ‘stringing’ across the chamber. For future projects and manufacturing of components, such issues would have to be resolved. For this experiment, the researchers emphasized that they were concerned with material selection over port geometry.

“Visual inspection of each burn suggested that the ABS and ASA performed very well, and it was also noted that the PETG burn was significantly hotter than any of the other burns,” stated the researchers. “Of all the materials tested, the AL appeared to have performed extremely well, with an incredibly energetic combustion. However, inspection of the regression rate data shows that it was, in fact, one of the worst performing materials.”

ASA had the highest average regression rate, followed by nylon, and then PEETG.

“It was observed that the fuel port radius of the ASA grain increased by the greatest amount. Despite the expected energetic combustion of the AL fuel grain, it was found to have a regression rate like the PLA without the addition of aluminum powder,” stated the researchers. “This shows that the aluminum powder did not impact on the regression rate, perhaps due to its particle size and surface area. The regression rate of ABS fuel grain was one of the lowest of the materials tested. A similar value to ASA was expected due to their similar chemical and mechanical properties. This unexpected value can be explained by the low oxidizer mass flux for ABS.

“It was speculated that the poor performance of the AL fuel grain was largely due to the size, shape and surface area of aluminum particles. Despite this poor performance in this research, the impact of Al particles on fuel grains performance should be analyzed, especially the contribution of different variables, such as, size, shape, and surface area of aluminum particles.”

While the world of 3D design and 3D printing is full of wonders that are wide-ranging—and from around the world—the study of materials continues to grow more fascinating. 3D printing and additive manufacturing processes with metal are involving impressively, along with polymers, and many other alternative forms such as concrete, wood, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Combustion port comparisons, left to right: ABS, PLA, PP, ASA, PTEG, and AL.

[Source / Images: ‘

Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Different Materials

’]

 

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 11:12PM
0 Comments

Poietis: Bioprinting With Their Innovative Laser-Assisted Technology

7/31/2019

0 Comments

 


Poietis: Bioprinting With Their Innovative Laser-Assisted Technology

https://ift.tt/2OtaOcs

In 2014, French startup Poietis developed a unique technology for the bioprinting of living tissue. Unlike conventional approaches to tissue engineering or extrusion bioprinting, their promising 4D laser-assisted system allows cells to be positioned in three dimensions with micrometric resolution and precision. Their aim is to design living tissue using cells and biomaterial that researchers can apply to manufacture products for regenerative medicine, preclinical research, and cosmetic uses–making a big difference in the testing of cosmetics and consumer products. This is especially relevant considering that the debate about animal research and testing is a hot topic everywhere.

In 2013, the European Union passed legislation that instituted a ban on the sale of animal-tested products in the continent, followed by other countries like India, Israel, Norway, Taiwan, and New Zealand, while the practice is being contested in the US and other markets where it is still legal. Companies like Poietis are using 3D bioprinting technology to develop a more cost-effective, versatile, and ethical way for companies to go about testing. But that’s just one of their advantages, along with the development of the multimodal bioprinting platform Next Generation Bioprinting (NGB); the creation of Poieskin, commercial bioprinted human tissue; and the NGB-C system for clinical applications.

Researcher at work at Poietis labs

In 2012 and after 20 years of professional experience in the biotech MedTech sector, the co-founder of Poietis, Bruno Brisson, met Fabien Guillemot (the other co-founder of the company and CEO).

“Guillemot was questioning himself about the valorization of a technology he had developed with his team at INSERM and the Tissue Bioengineering Lab of the University of Bordeaux: laser-assisted bioprinting, and I had created a consulting firm focused on business development in life sciences, so it was the right time to get together and share our vision of what could be done with this technology and what we wanted to do in the future,” revealed Brisson in an interview with 3DPrint.com. “We wanted to set-up an innovative company that could take the technology to clinics, provide new therapeutic solutions to the market of tissue and organ repairs, and help develop new advanced therapies.”

Bruno Brisson, Co-Founder of Poietis

Regulatory pressure everywhere to ban animal testing and concerns about animal experiments to model human health, along with the animal experiment ban for the cosmetics industry in Europe, has resulted in an evergrowing demand for in vitro alternatives. This is one of the reasons why Poeitis founders decided to first focus on in vitro applications for the skin tissue market. To do so, they hired an interdisciplinary team of physicists, software developers, biologists, and pharmacists to bring their expertise to the areas of laser and optics, microfluidics, machine learning, cell biology, and tissue engineering as well as cell therapy manufacturing. Their bioprinted in vitro models are used in dermo-cosmetics, but also in pharmaceutical research, for example, to evaluate the mechanism of actions for validating new drug candidates in the case of disease models.

The company, headquartered in Pessac, France, soon developed partnerships with other firms. In 2015, chemical giant BASF signed an agreement with Poietis to 3D print skin for cosmetic testing purposes, using the 3D laser-assisted bioprinting technology to further develop its Mimeskin tissue, which is one of the closest equivalents to the original physiological equivalents of real human skin. After their success, they moved towards improving the skin models by increasing structure complexity and adding new cell types. Almost around the same time, Poietis became associated with the L’Oréal group and began researching how to bioprint hair as a viable solution for people suffering from alopecia.

“Poietis has been able to enter into industrial partnerships quickly after inception, like with pharma company Servier to develop a 4D bioprinted liver model that could predict liver toxicity of drugs better than current methods,” Brisson said. “As well as other collaborations with the academic sector, such as with the Catholic University of Leuven (KU Leuven), in Belgium, on cartilage. As well as through two European Consortium EU H2020 FET-Open Pan3DP projects, one to biomimic developmental processes to fabricate 3D bioprinted pancreatic tissue units that allow sustained cell viability, expansion and functional differentiation ex vivo and another in neurobiology.”

A 16 layer 3D structure designed with Poietis CAD software and created with the NGB-R’s extrusion process

At Poietis, the core of their expertise is the high-resolution laser-assisted bioprinting, after which they have based and developed their Next-Generation Bioprinting (NGB) platform, which they claim gives tissue engineers and researchers greater freedom in the choice of biomaterials and hydrogels, and greater versatility in their research and development. The two bioprinters currently marketed are the NGB-R Bioprinter (commercialized for research applications) and the NGB-C Bioprinter (a clinical-grade, GMP-compliant system dedicated to clinical applications and challenges of industrial manufacturing of implantable tissues).

“Today our NGB-R consists of a platform (CAD + bioprinter) allowing to control the 3D organization of cells with cell resolution. It is an automated, robotized bio-printing platform guaranteeing reproducible tissue manufacturing and accelerating translation to clinical phases. Moreover, it is a single multimodal platform embedding the three main bioprinting technologies–including laser-assisted bioprinting– and allowing researchers to work with a variety of cell types but also to assess the printability and biocompatibility and work with a number of bioinks. Finally, we can control and monitor the formation of organoids through a controlled deposition of 2D cells (one or more cell types) and bioprint large objects such as cell aggregate of spheroids,” said Brisson.

At Poietis, they talk about the process as a form of 4D printing, claiming that “the approach consists in programming self-organized tissue (cells and extracellular matrix) that evolve in a controlled way until specific biological functions emerge”. So that by analyzing tissue evolution during maturation, they are able to optimize the initial tissue architecture defined by a CAD tool in order to improve the functionality of the printed tissues and guarantee that they are manufactured in the most reliable way. The company is developing dedicated software to program tissue self-organization, which means that they will anticipate the evolution of the bioprinted construct with time. And time plays a big role in 4D bioprinting, something which makes their system quite unique.

We have talked about 4D printing before, which means creating 3D objects that change their shape over time in response to stimuli such as heat, moisture or light, making structures that easily adapt to their environment. On the hardware side, Poietis applies its laser-assisted bioprinting technique using laser pulses programmed to be sent every nanosecond, used to deposit microscopic droplets of cell-laden ink on a cartridge (composed of an ink film spread on a glass plate). Via the software, they can control the physical conditions of the ejection (like energy and viscosity), as well as the droplet volume to near picolitre accuracy. According to the company, the process can achieve 20 µm resolution at speeds of 10,000 droplets a second, resulting in cell concentrations of 100 million cells/mL and 100 percent cell viability.

VIDEO

The process led Poietis to develop Poieskin, a bioprinted skin made up of a human full-thickness skin model that is entirely produced by 3D bioprinting.

“Poieskin® consists of a dermal compartment composed of primary human fibroblasts embedded in a collagen I matrix overlaid by a stratified epidermis derived from primary human keratinocytes. Its biofabrication benefits from the latest advances in 3D bioprinting technology. The high precision and resolution of Poietis laser-assisted bioprinter, as well as the embedded in-line monitoring systems, able to control the quality of each bioprinted layer and hence to manufacture controlled 3D cell structures and reproducible tissue models. It can be used for pharmacological and cosmetic research (like testing the effects of a drug on a real human skin equivalent), so at the moment, we are mainly selling the innovation to CROs (Contract Research Organisations), academic laboratories and dermo-cosmetic firms.”

With a tissue engineering market worth an estimated 15 billion dollars, and growing, the bioprinting industry is getting a lot of attention, and companies all over the world are taking notice. Poietis has three patents covering its bioprinting technology, and a recent financing round of five million euros to accelerate technological developments that could lead to the first implantation of a bioprinted tissue into patients starting in 2021, and is well is on its way to becoming one of the innovative European startups to look for during the coming years.

Brisson explained that “the future of tissue engineering will be based on technologies capable of studying the growth of connective tissue or organs but also to produce replacement tissue for implantation into the body. We consider that tissue engineering will be the next revolution in healthcare, using the patient’s own cells to build or rebuild organs.”

At the lab with Poietis

“Poietis is still working a lot on skin bioprinting, especially for in vitro applications based on Poieskin® as a platform of complexification. But the company is also developing the NGB-C system to meet future clinical needs of our partners, which is based on the same core technology as NGB-R, but NGB-C will face the requirements of translational research and the challenges associated with the industrial manufacturing of implantable tissues. Right now we are at a turning point as we started different projects with clinical aims, the first and most advanced is on the skin by targeting certain wound indications with a goal of a first-in-man within two years (clinical trials). We also have two other projects in cardiology and for all of these, we already have clinical collaborators.”

NGB-C System

The bioprinting technology available at Poietis is the result of innovative research, and over a ten-year time lapse at Inserm and the University of Bordeaux, resulting in wins at the iLab competition in 2014, the World Innovation Challenge Phase II in 2017, and most recently the EY Disruptive Strategy Award. But Poietis is lucky to be among a forward-looking bioprinting environment. The groundbreaking technology has seen some challenges over the last few years, and not every country has made efforts to help with its development.

According to Brisson, “France is certainly helping the emergence of these technologies with agencies such as BpiFrance, the French Public Investment Bank and a one-stop-shop for entrepreneurs and different subsidies for innovation at regional and national levels. That being said initiatives at the European level will certainly have a bigger impact, such as Restore–a very large action for advanced therapies at the EU level–, as well as the support of the European Medicines Agency.”

In many ways, Poietis has begun to change the future of regenerative medicine and the manufacture of living tissue. With uses in cosmetics and drug testing that are quickly becoming an alternative to animal testing everywhere, the company is fast to becoming a household name in France, pushing the advances of their innovation into clinical labs and giving researchers more tools to efficiently surpass the limits of bioprinting. We’ll have to wait until 2021 before the first implantation of bioprinted tissue into patients become a reality.

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 08:24AM
0 Comments

Scientists Use 3D Printed Models to Further Congenital Heart Disease Studies

7/31/2019

0 Comments

 


Scientists Use 3D Printed Models to Further Congenital Heart Disease Studies

https://ift.tt/2YzD6lt

In the recently published ‘Accurate Congenital Heart Disease Model Generation for 3D Printing,’ researchers explore 3D printing for diagnosis, treatment, and planning in congenital heart disease (CHD) patients. CHD usually presents itself at birth and can be difficult to analyze, even with 3D medical images—and despite many different studies by scientists around the world. The researchers note that 3D printing has been ‘widely adopted’ in clinical settings lately, offering for improvements in the following:

  • Clinical decision making
  • Interventional planning
  • Communication between physicians and patients
  • Improving medical education

(Top) Examples of large structure variations in CHD. In normal heart anatomy (a), PA is connected to RV. However, in pulmonary atresia (b), PA is rather small and connected to descending Ao. In common arterial trunk (c), Ao is connected to both RV and LV, and PA is connected to Ao. (Bottom) Pulmonary atresia and common arterial trunk examples in our dataset, with large variations from normal heart anatomy.

In the dataset for this research, combining deep learning and graph matching for whole heart and great vessel segmentation in CHD, patients ranged in age from one month to 21 years old—while most were from one month to two years old. Out of 16 cases, the study covers 14 types of CHD to include the most common 8, which are atrial septal defect (ASD), atrio-ventricular septal defect (AVSD), patent ductus arteriosus (PDA), pulmonary stenosis (PS), ventricular septal defect (VSD), co-arctation (CA), Tetrology of Fallot (ToF), and transposition of great arteries (TGA).

Overview of the proposed framework combining deep learning and graph matching for whole heart and great vessel segmentation in CHD.

The researchers explain that there has already been a prolific amount of research using the multi-modality whole heart segmentation method, with ‘state-of-the-art performance’ found in combining 3D U-net for segmentation and a simple convolutional neural network for label position prediction. Another technique involves using the basic simple convolutional neural network for label position prediction, while another handles blood pool and myocardium in blood pool segmentation.

 “Considering the significant variations in heart structures and great vessel connections in CHD, almost all the existing methods cannot effectively perform whole heart and great vessels segmentation in CHD,” state the researchers.

Motivated instead by the promise of graph matching, they used deep learning and graph matching, collecting 68 CT images overall, with an 11.9 percent higher Dice score. The framework consisted of:

  • Region of interest cropping
  • Chambers and myocardium segmentation
  • Blood pool segmentation
  • Chambers and myocardium refinement
  • Graph matching

Segmentation results were printed on a Sailner J501Pro for evaluation—a process that took the researchers about three to four hours. The researchers assessed the 3D printed model as correct, and with clear shape and connections, with minor refinements necessary such as thin coronary vessels.

“We also printed out part of the segmentation results with minor manual refinement and showed that it can be applied to clinic use,” concluded the researchers.

3D printed models have proven to be more than just helpful in many different areas of the medical realm, especially as they are able to offer so much in terms of education not only for students but also for patients and their families, as well as helping in the preoperative stages—and during the actual operation too with surgical planning models.

(Top) Visualized comparison between the state-of-the-art method Seg-CNN [12] and our method. The differences from the ground truth are highlighted by the red circles. (Bottom) Examples of 3D printing models using our method with some minor manual refinement.

[Source / Images: ‘

Accurate Congenital Heart Disease Model Generation for 3D Printing

’]

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 07:54AM
0 Comments

Experiments with 3D Design and 3D Printing of Mesh Fabrics with FDM and PLA

7/31/2019

0 Comments

 


Experiments with 3D Design and 3D Printing of Mesh Fabrics with FDM and PLA

https://ift.tt/2Kf6Uyx

3D printing and materials are an intertwined science, and one that many researchers, engineers, and manufacturers put a lot of research and development into today—all working toward the goal of perfecting production. In ‘Design for Material Extrusion on Mesh Fabrics,’ UK researchers delve more specifically into the use of ‘off-the-shelf’ PLA for mesh fabrics created via FDM 3D printing. Their study was created for the purpose of helping designers understand more about the complexities of progressive fabrication techniques and specifically, issues in adhesion.

Additive manufacturing and 3D printing offer huge opportunities for fashion designers to innovate, and produce an infinite array of patterns and textures, along with complex geometries as desired. The researchers categorize 3D printed textiles as either fully 3D printed and flexible or 3D printed polymers that have been placed on textile fabrics as an addition afterward. Because fashion design is such an artistic endeavor, 3D design and printing are an enormous technological complement, allowing for innovation that may not have been possible before. The researchers explain that 3D printing offers new applications for the following:

  • Individualized garments production
  • New textile functionalization
  • Multi-material composite explorations
  • Development of new techniques
  • More sustainability in materials for the industry overall

Advanced studies are needed, however, to address and conquer numerous challenges that other users are continually battling such as diminishment of mechanical properties, adhesion issues, finishing processes, and more. Here, samples were created with Prusa PLA, using a Prusa i3 MK3 printer. The researchers experienced challenges as the first sample was found to be extremely poor in terms of adhesion and stability, but the second one was much more positive.

The fabric set up secured using clips. It is recommended to cut the fabric to the size of the build platform (25cmx23cm) so that it can be stretched flat on the build platform, preventing the nozzle to be caught on the fabric.

The specimen set up on a Universal Testing Machine for T-Peel Test. The specimen was clamped firmly on the grips of the testing machine without slippage throughout the test.

The research also uncovered data regarding porosity, showing that larger pores resulted in a better intermolecular bond between layers, with PLA-F1 and PLA-F3 offering larger pore sizes. The team also found that in 3D printing on mesh, many adhesion issues can be prevented as they present ‘opening gaps’ for firm adhesion measures; however, lower ‘stretch-ability’ allows better adhesion consistency too.

Ultimately, the study showed that laminating fabric in between two polymer layers is the secret to creating a bond, with form-locking connections, working well with the following:

  • Large pore size
  • Loose weave structure
  • Low weft
  • Stitch density

Surface properties are important, along with chemical properties and the makeup of the substrate. Previous research has also shown that polymers have better adherence success on:

  • Cotton
  • Polyester
  • Wool
  • Viscose

“Regarding 3D printing settings, an optimum z-distance height provides the best polymer-textile adhesion. The risk of print failures increases when the z-distance was not set properly. 3D printing at a higher temperature of 5 – 10°c from suggested filament temperature reduce the viscosity of the printing material which allow the extruded material to penetrate deeper into the woven fabric,” concluded the researchers.

“Experiment results showed that the printing speed and polymer flow have no substantial impact on the adhesion force, but it is recommended to print at a slower speed of 20 – 22.5mm/s and 100% flow rate for slightly better adhesion result. Future work will extend the study of interface adhesion of 3D printed polymers on textile fabric using microscopic images, testing on washing cycles and explorations of new materials for 3D printed textiles.”

3D printing has been an enormous boon for designers around the world, as well as users interested in using materials and textiles for manufacturing purposes. In fashion, we have seen 3D meld into the next dimension with the 4D Kinematics dress, to entire collections including jewelry and shoes, and a variety of new materials and inks. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘

Design for Material Extrusion on Mesh Fabrics

’]

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 06:15AM
0 Comments

Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts

7/31/2019

0 Comments

 


Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts

https://ift.tt/31fbQKT

PiKon telescope

While the majority of us are not astronauts, there is a tool that can be used in your home to make you feel like you’re just a little bit closer to the stars – the telescope. Five years ago, a group of UK researchers from the University of Sheffield, including physicist Mark Wrigley, were inspired by NASA’s Juno spacecraft to create their own DIY telescope, the PiKon, using 3D printing and a Raspberry Pi. Now, a pair of Polish scientists have followed in their footsteps with their own parametric, open source, DIY telescope with 3D printed parts.

Aleksy Chwedczuk and Jakub Bochiński wanted to help popularize astronomy by making their own semi-professional, yet affordable, telescope model for at-home use, for which people can then download the files and create on their own. Chwedczuk and Bochiński call their creation the Telescope Prime, and created the first prototype in just eight hours. The initial prototype was then used to take pictures of the moon, and the final version was finished in less than three months.

The look from the inside of the Telescope Prime

Polish 3D printing company Sygnis New Technologies offered to help the scientists create their DIY telescope by sharing their equipment.

“As Sygnis New Technologies, we are proud to say that we have participated in the Telescope Prime project by adjusting 3D models of parts of the telescope and printing them for the science duo,” Marek Kamiński, the Head of Social Media for Sygnis New Technologies, told 3DPrint.com.

Telescopes have been helping people observe outer space since the 17th century, though at that time it was reserved only for the elite citizens who could purchase the equipment. But even though there is much more variety available today, it’s still not something that is widely available – the device has many complex, interacting elements. That’s why Chwedczuk and Bochiński wanted to use 3D printing to help create a more affordable, open source version.

In a piece by Sygnis, the two scientists said, “We wanted to initiate the development of an open-project telescope that could be easily modified and expanded…

“At the same time, it should be a digital telescope – adapted to our 21st century online lifestyle, where the habit of sharing one’s experiences on the Internet is the new norm.”

The telescope model, which all together costs less than $400 to put together, is made of three main parts: the 20 cm diameter parabolic mirror (with a recommended focal length of 1 m), a Raspberry Pi microcomputer with a camera and touch display, and 3D printed parts that are used to fix the camera and the mirror. To help keep costs down, “readily available materials,” like wood, screws, and a paper tube, are used to build the Telescope Prime.

Aleksy Chwedczuk with the first prototype of the telescope

In a further effort to keep the telescope fabrication as inexpensive as possible, it does not have lenses. Light is focused in a single spot, and stops on the mirror. A boarding tube makes up the body of the device, and plywood parts are then added. The telescope can use its build-in camera to take images of the night sky, and transmit them online in real-time using the touchscreen of a computer, projector, or tablet. Additionally, you can easily increase and reduce the size of the telescope – just enter the mirror’s size into the program, and all of its dimensions will be automatically converted.

“The creators had to take into account the realities of the 21st century, modern issues of the popularization of astronomy, also among the youngest amateurs of the starry sky, as well as the availability of materials for the construction of the telescope,” Sygnis wrote. “Telescope Prime is an innovative idea that reflects the needs and possibilities of an astronomer enthusiast of the second decade of the 21st century.”

The open source models for the telescope parts, which are available for download on the Telescope Prime website, were prepared in advance for 3D printing, so they didn’t need any corrections later. These elements were 3D printed on FlashForge 3D printers out of Orbi-Tech PLA material, and it took a total of 156 hours of printing to create the 17 telescope parts.

The final version of the Telescope Prime

Kamiński told 3DPrint.com that the two scientists are currently “promoting the project on Polish universities, schools and science institutes.” This makes sense, as the Telescope Prime website explains that the project was “initiated and fully carried out” on the grounds of the Akademeia High School in Warsaw.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Sygnis New Technologies]

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 31, 2019 at 02:27AM
0 Comments

Board of Governors Temporary Emergency Committee to meet Aug. 9

7/30/2019

0 Comments

 


Board of Governors Temporary Emergency Committee to meet Aug. 9

https://ift.tt/2ZjKsul

WASHINGTON — The Temporary Emergency Committee (TEC) of the Board of Governors of the U.S. Postal Service will meet Aug. 9, 2019, in open session at Postal Service headquarters, 475 L’Enfant Plaza, SW, Washington, D.C. The public is welcome to observe the meeting beginning at 9:00 a.m. ET in the Benjamin Franklin Room on the 11th floor. The TEC is expected to discuss the following items:



Printing

via USPS News https://ift.tt/2hH9aDC

July 30, 2019 at 01:21PM
0 Comments

Upcoming 2019 stamp dedications

7/30/2019

0 Comments

 


Upcoming 2019 stamp dedications

https://ift.tt/2K9uVHi

New Stamp Revealed



Printing

via USPS News https://ift.tt/2hH9aDC

July 30, 2019 at 10:50AM
0 Comments

Additive Manufacturing Materials Talent Insight

7/30/2019

0 Comments

 


Additive Manufacturing Materials Talent Insight

https://ift.tt/2ZlfLoF

Recently, at AMPM2019 Conference in Phoenix, Additive Manufacturing industry experts identified materials as one of the main challenges of the 3D printing industry and its growth. Developing more materials in Additive Manufacturing means a higher demand for materials specialised professionals in the AM industry.

i-AMdigital has researched the talent landscape within AM materials, to identify where this talent can be found, and what the top employers, universities and technologies used are.

Who are the materials specialists, working with 3D Printing?

According to LinkedIn data analysis from June 2019, the three educational backgrounds that dominate the profiles of the AM material specialists are Material Sciences, Materials Engineering and Mechanical Engineering, with respectively 28%, 25% and 20%.

Mechanical and material engineering often go hand in hand, and the design of any machine cannot be separated from the materials used to make it, or the materials it will use itself. Moreover, materials must be developed and tested to achieve certain mechanical properties required by certain applications, verticals, markets and certification. This is the reason for the large percentage of mechanical engineering backgrounds. We are likely to see an increase in this combination of mechanical and materials engineering.

Whilst the metallurgical engineering background still holds a rather small percentage (3%), we are likely to see an increase in this, as the metal AM business is booming, and experienced metallurgists are increasingly highly sought-after.

Top 3D Printing technologies, used by AM materials specialists

i-AMdigital found that an impressive 38% of AM materials specialists primarily work with the Metal Powder Bed Fusion technology. This large percentage can be explained by the impressive boom in the metal AM market; according to the Wohlers’ Report 2019, the industry revenue from metals grew by 41.9% during 2018. This reflects the shift in the AM industry towards developing solutions better suited for serial production rather than rapid prototyping.

With 38% of material specialists working in metal AM, a 42% growth of the Metal AM market, and only 3% of material specialists coming from a metallurgy background, we can see a significant skills gap; the industry needs more materials specialists with metal background.

Who are their employers?

i-AMdigital investigated the companies employing the highest amount of AM material specialists, and found that they spread across several sectors of the industry; from end-users to 3D Printing Original Equipment Manufacturers.

The large employment of material specialists in end-user companies can be explained by the increase in the adoption of 3D Printing. According to Scupteo’s 2018 The State of 3D Printing report, there was an increase of 21% in the adoption of 3D Printing in production environments between 2017 and 2018. End-users, like Boeing and Rolls Royce, are increasingly adopting AM for producing more complex parts with more intricate design, as well as for tooling and prototyping. Employing material specialists is crucial for these end-users to adopt the technology efficiently and to help understand the capabilities of the machines and materials at hand. The AM OEM’s work hand in hand with end-users in order to (together) develop new applications, materials and software – and for that, they need material talent.

3D printing giants HP and Stratasys are natural appearances on this list of largest employers; their continuous development of new machines and applications require them to have a strong team of materials specialists to help drive their R&D departments. Moreover, the new markets and applications that are being explored by the AM OEM’s require new materials, which requires more AM material scientists and specialists.

Where are the AM material specialists located, geographically?

Which educational institutions house the talent?

www.i-AMdigital.com is a free platform dedicated to upskilling talent in the 3D Printing industry, in the pursuit of providing the industry and employers with a continuously growing talent pool.

Please enable JavaScript to view the comments powered by Disqus.




Printing

via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com

July 30, 2019 at 10:24AM
0 Comments

Snax Magazine

7/30/2019

0 Comments

 
https://ift.tt/2KaJqKU

Snax Magazine

https://ift.tt/331yKHe

Snax Magazine is a carefully curated print experience that promotes independent visual artists. Now available on Department Store, their mission is to create engaging and tangible artistic experiences that directly connect independent artists to the community. At Snax Magazine, the team believe that in an exceedingly digital world, print is still one of our society’s purest and most intimate forms of communication.

In Issue 6, The Phoenix Issue, talented artists from around the world are brought together to share stories of suffering, endurance, and light. From intimacy and self-awareness, to mental health and landscapes, the theme is reflected in many ways. The latest issue is a gallery of dynamic and powerful artwork that represent the theme of survival and resurrection.

Featured artists include Ajidagba Goodwin, arwalker, Cavier Coleman, Constance McBride, Danni Morris, Em North, Eric Papa, Harlan Hue, Ian Shepard, Jodie Herrera, Jose Romero Jr., Kestin Cornwall, Louis Cannizzaro, Marta de la Parra Prieto, Norm Yip, Ntangou Badila, Oli Berg, Olivia Baker, Shawn Theodore (xST), Terry Urban, Tristan Lindo and Vincent Chung.

Proudly printed in Brooklyn, NY on FSC certified papers with non-toxic, vegetable-based inks, grab your limited edition copy below.

www.snaxmagazine.com
www.deptsto.re

 

 





Printing

via People of Print https://ift.tt/2DhgcW7

July 30, 2019 at 03:57AM
0 Comments
<<Previous

    Categories

    All
    3-D Printed Ultrasound Models
    3-D Printing
    3D Printing
    Tools For The Visually Impared
    Visually Impared

    Archives

    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017

    RSS Feed

Powered by Create your own unique website with customizable templates.
  • Home
  • Blog
    • Social Media News
    • SEO Marketing News
    • Digital Trends News
    • Photography News
    • Mobile Marketing
    • Business News
    • Gadget News
    • Printing News
  • Contact
  • About
  • Subscribe