New Technique Creates Smoother 3D Printed Optical Components https://ift.tt/2OwADV6 3D printed objects don’t come off the print bed perfectly smooth; on the contrary, many 3D printing technologies leave a decent amount of surface roughness, which is unacceptable for applications involving optics. These applications may include mirrors, lenses, and solar panels, just to name a few. It would be easy to write off 3D printing as a method of producing these optics, but there are ways around the issue, as Stanford University researchers Nina Vaidya and Olav Solgaard demonstrate in a new paper entitled “3D printed optics with nanometer scale surface roughness.” You can access the full publication here. 3D printing is, in fact, an appealing option for 3D printing optics, as it allows for fast and cheap production of geometries that other methods of fabrication are not capable of. The rough surfaces of 3D printed objects, however, create scattering, which reduces optical performance. The Stanford researchers developed a UV curable polymer mixture that they applied to the surface of 3D printed parts, which reduces the surface roughness to a few nanometers as opposed to tens of microns.
The process takes several steps:
The researchers tested their technique with both flat and parabolic mirrors, solar concentrator arrays, and immersion lenses used in microscopy of biological samples. Consistently, they were able to reduce the surface roughness to less than three nanometers after the smoothing process.
3D printing has been used before to manufacture optical components, typically using highly specialized equipment to get the kind of surface needed. Vaidya and Solgaard tested multiple 3D printing technologies and found that SLA and wax printers were the most effective for creating optical components, as long as the smoothing solution was applied afterwards. Their method enabled them to produce optics that were low-cost, customizable, lightweight, low on material waste and easy to fabricate. Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.
Printing via 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing https://3dprint.com July 31, 2018 at 11:21AM
0 Comments
Leave a Reply. |
Categories
All
Archives
April 2023
|